

THE EFFECT OF THE GALAXY-HALO CONNECTION ON GALAXY CLUSTERING IN THE ADVENT OF STAGE-IV EXPERIMENTS

SANTIAGO ÁVILA

INDEX

- MOTIVATION: THE LARGE SCALE STRUCTURE AND COSMOLOGY
- INPUT TO THE PROJECT:
 - EBOSS EMISSION LINE GALAXIES (ELG)
 - OUTERRIM SIMULATION
 - HALO OCCUPATION DISTRIBUTION MODEL
- DISSECTING THE HALO OCCUPATION DISTRIBUTION MODEL FOR ELG
- FITTING HOD PROPERTIES TO DATA
- IMPACT ON COSMOLOGY
- OUTLOOOK & CONCLUSIONS

PART 1. LSS, MOTIVATION

S. Ávila (UAM) - LlneA webinars - 8/Apr/2021 - based on 2007.09012

- The early universe is made of a hot baryon-photon plasma
- Untill the temperature drops below 13.6ev and matter becomes neutral

- The early universe is made of a hot baryon-photon plasma
- Untill the temperature drops below 13.6ev and matter becomes neutral
- Sound waves propagate in the primordial plasma untill baryons decouple: the Baryonic Accoustic Oscillations.
- This leaves a preferred scale in the distribution of matter in the Universe.
- From decoupling, the BAO simply evolves with the expanding Universe

Time

- BAO can be found in the 2PCF of the CMB or the distribution of galaxies in the Universe (LSS)
- For galaxies, BAO is seen as an excess of pairs separated by ~100Mpc/h

 BAO can be used as a standard ruler in a similar way SNIa are used as standard candles to constrain the expansion history of the Universe

 Angular BAO constrains angular distances

$$D_M(z) = \frac{c}{H_0} S_k \left(\frac{D_C(z)}{c/H_0} \right)$$

$$S_k(x) = \begin{cases} \sin(\sqrt{-\Omega_k}x)/\sqrt{-\Omega_k} & \Omega_k < 0, \\ x & \Omega_k = 0, \\ \sinh(\sqrt{\Omega_k}x)/\sqrt{\Omega_k} & \Omega_k > 0. \end{cases}$$

Radial BAO constrains
 Hubble rate H(z)

$$H^{2}(z) = H_{0}^{2} \left[\Omega_{r}(1+z)^{4} + \Omega_{m}(1+z)^{3} + \Omega_{k}(1+z)^{2} + \Omega_{X}(1+z)^{3(1+w_{0}+w_{1})} \exp\left(\frac{-3w_{1}z}{1+z}\right) \right]$$

EXPANSION RATE H(z)

BAO AS A PILLAR OF ΛCDM

• BAO contributed to the settlement of LCDM as a standard model

BAO WITH DES-Y1

• BAO ANGULAR DISTANCE MEASUREMENT WITH 4% ACCURACY, WITH Y3/Y5: <2%

Standard Ruler: Angular distance

BAO WITH DES-Y1

• BAO ANGULAR DISTANCE MEASUREMENT WITH 4% ACCURACY, WITH Y3/Y5: <2%

CLUSTERING STATISTICS

Isotropic 2-Point Correlation Function (2PCF)

"excess probability of finding 2 galaxies separated by a distance r with respect to a random distribution"

CLUSTERING STATISTICS

Isotropic 2-Point Correlation Function (2PCF)

"excess probability of finding 2 galaxies separated by a distance r with respect to a random distribution"

CLUSTERING STATISTICS

Isotropic 2-Point Correlation Function (2PCF)

2D 2PCF, consider two "distances":

angular + radial

$$\xi(r_{\perp}, r_{\parallel}) = \xi(r_p, r_l) = \xi(\sigma, \pi)$$

• distance + orientation

 $\xi(r,\mu) = \xi(s,\mu)$

"excess probability of finding 2 galaxies separated by a distance r with respect to a random distribution"

REDSHIFT SPACE DISTORTIONS

 MATTER OVERDENSITIES CREATE VELOCITY DIVERGENCES DUE TO GRAVITY

 $\vec{\nabla} \cdot \vec{v} = -a\delta \frac{D}{D} = -a\delta H$

 WE MEASURE GALAXY POSITIONS IN REDSHIFT-SPACE: PECULIAR VELOCITIES WILL AFFECT THEIR APPARENT POSITION. linear flow

 $f \cdot \mu^2)^2 P_{DM}(k)$

 THIS WILL ENHANCE APPARENT OVERDENSITIES, AND INDUCE AN ANISOTROPY IN GALAXY CLUSTERING (KAISER 1987)

$$P_{0}(k) = \left(b^{2} + \frac{2}{3}fb + \frac{1}{5}f^{2}\right)P_{m}(k) \qquad P_{gal}(k,\mu) = \left(b + f \cdot \mu^{2}\right)^{2}P_{DM}(k)$$

$$WITH \qquad f(a) = \frac{d \log D(a)}{d \log a} \qquad THE GROWTH RATE OF STRUCTURE FORMATION.$$

THIS TELLS ABOUT THE STRENGTH OF GRAVITY AT COSMOLOGICAL SCALES

(plot by Jiamin Hou, MPE)

REDSHIFT SPACE DISTORTIONS

eBOSS: 2007.08991

0.4

18

SDSS / BOSS / EBOSS

- SLOAN DIGIGITAL SKY SURVEY
- (EXTENDED) BARYONIC ACOUSTIC
 OSCILLATION SPECTROSCOPIC
 SURVEY

- MAIN GOAL:
 - TO MEASURE BAO AT DIFFERENT EPOCHS
 - TO MEASURE REDSHIFT SPACE
 DISTORTIONS

Apache Point Observatory, US

eBOSS: 2007.08991

EBOSS RESULTS

eBOSS: 2007.08991

EBOSS RESULTS

REFERENCES

Parameter	Main Galaxy Sample (MGS)	BOSS Galaxy	BOSS Galaxy	eBOSS LRG	eBOSS ELG	eBOSS Quasar	Lyα-Lyα	Lyα- Quasar
		Imaging, Targ	et Selection, a	nd Spectroscop	oic Properties of	of Each Sample		
Imaging for Target Selection	SDSS	<u>SDSS</u>	<u>SDSS</u>	<u>SDSS</u> + <u>WISE</u>	DECaLS	<u>SDSS</u> + <u>WISE</u>	SDSS + WISE + MISC	SDSS + WISE + MISC
Target Selection	g, <u>r</u>	<u>g.r.i</u>	gani	<u>g,r,i,z,W1</u>	g, <u>r,z</u>	<u>u,g,r,i,z,W1</u> , <u>W2</u>	misc	misc
Spectrosco pic Program	SDSS-I and - II	BOSS	BOSS	BOSS and eBOSS	eBOSS	primarily eBOSS	BOSS and eBOSS	BOSS and eBOSS
redshift range	0.07 < z < 0.20	0.2 < z < 0.5	0.4 < z < 0.6	0.6 < z < 1.0	0.6 < z < 1.1	0.8 < z < 2.2	z > 2.1	z > 1.77
Number of Tracers	63,163	604,001	686,370	377,458	173,736	343,708	210,005	341,468
Effective Redshift	0.15	0.38	0.51	0.70	0.85	1.48	2.33	2.33
Effective Volume (Gpc ³)	0.24	3.7	4.2	2.7	0.6	0.6		
Clustering Catalog Documenta tion	<u>Ross et al.</u> (2020)	<u>Reid et al.</u> <u>(2016)</u>	<u>Reid et al.</u> (<u>2016)</u>	<u>Ross et al.</u> (<u>2020)</u>	<u>Raichoor et</u> <u>al. (2020)</u>	<u>Ross et al.</u> (2020), <u>Lyke</u> <u>et al. (2020)</u>	du Mas des Bourboux et al. (2020), Lyke et al. (2020)	du Mas de Bourboux et al. (2020), Lyke et al (2020)
N-body and Mock Catalogs		<u>Kitaura et</u> <u>al. (2016)</u>	<u>Kitaura et</u> <u>al. (2016)</u>	<u>Zhao et al.</u> (2020), Rossi et al. (2020)	Zhao et al. (2020), Lin et al. (2020), Alam et al. (2020), Avila et al. (2020)	<u>Zhao et al.</u> (2020), <u>Smith et al.</u> (2020)	<u>Farr et al.</u> (<u>2020)</u>	<u>Farr et al.</u> (2020)

			RS	D Measuremen	nts			
Correlation Function Measureme nt	0							
f σ ₈ (z)	0.53 +/- 0.16	0.500 +/- 0.047	0.455 +/- 0.039	0.448 +/- 0.043	0.315 +/- 0.095	0.462 +/- 0.045		
			BAO+	RSD Measuren	nents			
Correlation Function Multipoles								
Power Spectrum Multipoles								
D _V (z)/r _d	4.51 +/- 0.14							
D _M (z)/r _d		10.27 +/- 0.15	13.38 +/- 0.18	17.65 +/- 0.30	19.5 +/- 1.0	30.21 +/- 0.79	37.6 +/- 1.9	37.3 +/- 1.7
$D_{\rm H}(z)/r_{\rm d}$		24.89 +/- 0.58	22.43 +/- 0.48	19.78 +/- 0.46	19.6 +/- 2.1	13.23 +/- 0.47	8.93 +/- 0.28	9.08 +/- 0.34
$f\sigma_8$	0.53 +/- 0.16	0.497 +/- 0.045	0.459 +/- 0.038	0.473 +/- 0.041	0.315 +/- 0.095	0.462 +/- 0.045		
Reference for final results	<u>Howlett et</u> <u>al. (2015)</u>	<u>BOSS</u> <u>Collaboratio</u> <u>n (2017)</u>	<u>BOSS</u> <u>Collaboratio</u> <u>n (2017)</u>	<u>Bautista et</u> <u>al. (2020),</u> <u>Gil-Marin et</u> <u>al. (2020)</u>	<u>Tamone et</u> <u>al. (2020), de</u> <u>Mattia et al.</u> (2020)	<u>Hou et al.</u> (2020), <u>Neveux et</u> al. (2020)	<u>du Mas des</u> <u>Bourbuox</u> et al. (2020)	<u>du Mas des</u> <u>Bourbuox</u> et al. (2020)

REFERENCES

WORK BASED ON ARXIV:2007.09012

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **499**, 5486–5507 (2020) Advance Access publication 2020 September 25

doi:10.1093/mnras/staa2951

The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: exploring the halo occupation distribution model for emission line galaxies

S. Avila[®], ^{1,2,3}★ V. Gonzalez-Perez[®], ^{3,4}★ F. G. Mohammad, ^{5,6} A. de Mattia, ⁷ C. Zhao, ⁸ A. Raichoor, ⁸ A. Tamone, ⁸ S. Alam, ⁹ J. Bautista[®], ³ D. Bianchi, ^{10,11} E. Burtin, ⁷ M. J. Chapman, ^{5,6} C.-H. Chuang[®], ¹² J. Comparat, ¹³ K. Dawson, ¹⁴ T. Divers, ³ H. du Mas des Bourboux, ¹⁴ H. Gil-Marin[®], ^{10,11} E. M. Mueller, ¹⁵ S. Habib, ¹⁶ K. Heitmann, ¹⁶ V. Ruhlmann-Kleider, ⁷ N. Padilla, ¹⁷ W. J. Percival, ^{5,6,18} A. J. Ross[®], ¹⁹ H. J. Seo, ¹⁹ D. P. Schneider²⁰ and G. Zhao^{3,21}

PART II. INGREDIENTS

Outerrim Simulation

eBOSS ELG data

S. Ávila (UAM) - LlneA webinars - 8/Apr/2021 - based on 2007.09012

ELGS WITH EBOSS: THE SAMPLE

 $N_{eff} = 201,122$

$$\bar{n} = \frac{N_{\text{eff}}}{V_{\text{eff}}} \quad \bar{n}_{\text{eBOSS}} = 2.187 \cdot 10^{-4} (\text{Mpc}/h)^{-3}$$
$$\bar{n}_{\text{SGC}} = 2.267 \cdot 10^{-4} (\text{Mpc}/h)^{-3}, \ \bar{n}_{\text{NGC}} = 2.110 \cdot 10^{-4} (\text{Mpc}/h)^{-3}$$

 $V_{\rm eff} = (972.4 \ {\rm Mpc}/h)^3$

DARK MATTER HALOS

- GALAXIES LIVE IN DARK MATTER HALOS
- DARK MATTER HALOS ARE BETTER UNDERSTOOD FROM THE THEORETICAL POINT-OF-VIEW:
 - SPHERICAL TOP-HAT COLLAPSE
 - PRESS-SCHECHTER
 - PEAK-BACKGROUND SPLIT MODEL
 - HALO MODEL, ETC.
- LARGE SIMULATIONS USED FOR VERY LARGE SCALES
 ONLY INCLUDE DARK MATTER.
- WE WILL USE HALOS FROM OUTERRIM SIMULATION
- WE WILL STUDY HOW THE RELATION BETWEEN DARK MATTER AND GALAXIES AFFECTS GALAXY CLUSTERING

S. Ávila (UAM) - LlneA webinars - 8/Apr/2021

h

OUTERRIM SIMULATION

N-Body simulation
 Using snapshot z=0.865

(Heitman et al. 2019)

9

b/p4

• Halo Clustering

L = 3000 Mpc/h $N = 10240^3$ $m_{\text{DM}} = 1.9 \times 10^9 M_{\text{sun}}/h$

Ω_{cdm}	0,22	
Ω _b	0,0448	
n _s	0,963	
h	0,71	
σ ₈	0,8	

• The clustering of galaxies has 2 component: 1-halo and 2-halo terms

Model: Peacock & Dodds 96; Source: Cooray & Seth 2002

- The clustering of galaxies has 2 component: 1-halo and 2-halo terms
- How a certain galaxy sample populates the DM halos of different masses will determine the clustering of the galaxies. It will depend on five properties (Berlind & Weinberg 2002):
- 2-halo

• 1. Mean halo Occupation <N(M)> $\langle N(M_h) \rangle$

30

Zehavi 2005

• Typically, a smooth step function for centrals 10² 10¹ And a power law for the satellites <N> 10⁰ 10-1 All Centrals Satellites 10-2 10 11 12 13 14 $\log M [M_{\odot}/h]$

15

Zehavi 2005

Zehavi 2005

Zehavi 2005

"CANONICAL" HOD SHAPE

Zehavi 2005

BUT NOT ALL GALAXIES ARE EMISSION LINE GALAXIES

38

S. Ávila (UAM) - LlneA webinars - 8/Apr/2021 - based on 2007.09012

ALTERNATIVE: LEARN HOD FROM SAMS

WE FIT A SIMPLE FORMULA TO THE RESULTS FROM GONZÁLEZ-PÉREZ ET AL. 2018 USING GALFORM

HOD: GAUSSIAN + (2) POWER LAW

WE FIT A SIMPLE FORMULA TO THE RESULTS FROM GONZÁLEZ-PÉREZ ET AL. 2018 GALFORM

HOD-2
$$< N_{cent} >= \frac{A_c}{\sqrt{2\pi\sigma^2}} \exp\{\frac{(\log M_h - \mu)^2}{2\sigma^2}\}$$

 $< N_{sat} >= A_s \left(\frac{M_h - M_0}{M_1}\right)^{\alpha}$

• FIX ALL SCALING RATIOS (
$$M_0/M$$
, M_1/M , $A = 0.8$, $\Sigma = 1$

HOD: GAUSSIAN + (2) POWER LAW

• IN THIS CASE THE RATIOS ARE: (γ =-1.4, M_0/μ , M_1/μ , α = 0.9, σ = 0.8)

BASIC CONSTRAINS ON HOD

• WE CAN FIT THE LARGE SCALE LINEAR BIAS AND NUMBER DENSITY ANALYTICALLY:

$$\bar{n}_{\text{gal}} = \int n(M_h) \big[\langle N_{\text{cen}}(M_h) \rangle + \langle N_{\text{sat}}(M_h) \rangle \big] dM_h$$

 $\bar{n}_{eBOSS} = 2.187 \cdot 10^{-4} (Mpc/h)^{-3}$

$$b_{\text{gal}} = \frac{1}{\bar{n}_{\text{gal}}} \int n(M_h) \cdot b(M_h) \big[\langle N \rangle_{\text{cen}}(M_h) + \langle N \rangle_{\text{sat}}(M_h) \big] dM_h$$

 $b_{\rm eBOSS} = 1.320 \pm 0.014$

BASIC CONSTRAINS ON HOD

• WE CAN FIT THE LARGE SCALE LINEAR BIAS AND NUMBER DENSITY ANALYTICALLY:

$$\bar{n}_{\text{gal}} = \int n(M_h) \big[\langle N_{\text{cen}}(M_h) \rangle + \langle N_{\text{sat}}(M_h) \rangle \big] dM_h$$

 $\bar{n}_{eBOSS} = 2.187 \cdot 10^{-4} (Mpc/h)^{-3}$

$$b_{\text{gal}} = \frac{1}{\bar{n}_{\text{gal}}} \int n(M_h) \cdot b(M_h) \big[\langle N \rangle_{\text{cen}}(M_h) + \langle N \rangle_{\text{sat}}(M_h) \big] \mathrm{d}M_h$$

 $b_{\rm eBOSS} = 1.320 \pm 0.014$

- WE CAN ADDITIONALLY CHOOSE $\mathrm{F}_{\mathrm{SAT}}$

$$f_{\text{sat}} = \frac{1}{\bar{n}_{\text{gal}}} \int n(M_h) \langle N_{\text{sat}}(M_h) \rangle \mathrm{d}M_h$$

PART III. VARYING THE HOD MODELLING: EFFECT ON CLUSTERING

S. Ávila (UAM) - LlneA webinars - 8/Apr/2021 - based on 2007.09012

CLUSTERING STATISTICS

Isotropic 2-Point Correlation Function (2PCF)

2D 2PCF:

$$\xi(x,y) = \frac{DD(x,y) - 2DR(x,y) + RR(x,y)}{RR(x,y)}$$

2PCF multipoles:

$$\xi_\ell(s) = (2\ell+1) \int_0^1 \xi(s,\mu) L_\ell(\mu) d\mu$$

Projected Correlation Function

$$w_p(r_p) = 2 \int_0^{\pi_{\max}} \xi(r_p, \pi) d\pi$$

S. Ávila (UAM) - LlneA webinars - 8/Apr/2021 - based on 2007.09012

HOD VARIATIONS: CHANGING SHAPES

Effect on clustering ?

Same n,b f_{sat} for the 3 HODs

HOD VARIATIONS: CHANGING SHAPES

S. Ávila (UAM) - LlneA webinars - 8/Apr/2021 - based on 2007.09012

HOD VARIATIONS: CHANGING SHAPES

HOD: CHANGING SATELLITE FRACTION

S. Ávila (UAM) - LlneA webinars - 8/Apr/2021

HOD: CHANGING SATELLITE FRACTION

HOD: CHANGING SATELLITE FRACTION

CHANGING HOD SHAPE AND SATELLITE FRACTION:
 N_{CEN}>,
 N_{SAT}>

PROBABILITY DISTRIBUTION FUNCTION FOR SATELLITES

- Once we fix $\langle N_{cen} \rangle$ and $\langle N_{sat} \rangle$, we need to define the probability distribution function (PDF): P(N| $\langle N \rangle$)
- For satellite, what it is typically assumed is the **Poisson** distribution:

Where $\lambda\equiv\langle N
angle$, and obtaining $\sigma=\sqrt{\langle N
angle}$

$$P(N|\lambda) = \frac{e^{-N}\lambda^N}{N!}$$

PROBABILITY DISTRIBUTION FUNCTION FOR SATELLITES

- Once we fix $\langle N_{cen} \rangle$ and $\langle N_{sat} \rangle$, we need to define the probability distribution function (PDF): P(N| $\langle N \rangle$)
- For satellite, what it is typically assumed is the **Poisson** distribution:

Where $\lambda \equiv \langle N
angle$, and obtaining $\sigma = \sqrt{\langle N
angle}$

$$P(N|\lambda) = \frac{e^{-N}\lambda^N}{N!}$$

• Alternatively, we could use a Negative Binomial distribution, which has a (1+ β) larger scatter (jimemez+19): $P(N|r,p) = \frac{\Gamma(N+r)}{\Gamma(r)\Gamma(N+1)}p^{r}(1-p)^{N} \text{ with}$ $p = \frac{1}{(1+\beta)^{2}}, r = \frac{\lambda}{\beta(1+2\beta)}$ $\sigma = \lambda(1+\beta)$

PROBABILITY DISTRIBUTION FUNCTION FOR SATELLITES

- Once we fix $\langle N_{cen} \rangle$ and $\langle N_{sat} \rangle$, we need to define the probability distribution function (PDF): P(N| $\langle N \rangle$)
- For satellites, what it is typically assumed is the **Poisson** distribution:

Where $\lambda \equiv \langle N
angle$, and obtaining $\sigma = \sqrt{\langle N
angle}$

$$P(N|\lambda) = \frac{e^{-N}\lambda^N}{N!}$$

- Alternatively, we could use a Negative Binomial distribution, which has a (1+ β) larger scatter (jimemez+19): $P(N|r,p) = \frac{\Gamma(N+r)}{\Gamma(r)\Gamma(N+1)}p^{r}(1-p)^{N} \text{ with}$ $p = \frac{1}{(1+\beta)^{2}}, r = \frac{\lambda}{\beta(1+2\beta)}$ $\sigma = \lambda(1+\beta)$
- Or with lower scatter, the Nearest Integer (always the case for centrals):

$$P(N|\lambda) = \begin{cases} 1 - (\lambda - \text{INT}(\lambda)) & N = \text{INT}(\lambda) \\ \lambda - \text{INT}(\lambda) & N = \text{INT}(\lambda) + 1 \\ 0 & \text{else} \end{cases}$$

HOD: PDF VARIATIONS

Fixed f_{sat}= 0.30 HOD-3

2

0.8

0.6

0.4

0.2

0.0

1

Normalised count

HOD: PDF VARIATIONS

3

Number of Satellites

Next integer

Neg-bin β =0.100 Neg-bin β =0.200

5

Poisson

4

$$P(N|\lambda) = \frac{e^{-N}\lambda^N}{N!}$$

NEGATIVE BINOMIAL

$$P(N|r,p) = \frac{\Gamma(N+r)}{\Gamma(r)\Gamma(N+1)}p^r(1-p)^N \text{ with}$$
$$p = \frac{1}{(1+\beta)^2}, \ r = \frac{\lambda}{\beta(1+2\beta)}$$

• NEAREST INTEGER

$$P(N|\lambda) = \begin{cases} 1 - (\lambda - \text{INT}(\lambda)) & N = \text{INT}(\lambda) \\ \lambda - \text{INT}(\lambda) & N = \text{INT}(\lambda) + 1 \\ 0 & \text{else} \end{cases}$$

HOD, PDF VARIATIONS: P(N | <N>)

HOD, PDF VARIATIONS: P(N | <N>)

• NFW. By default we are assuming a Navarro-Frenk-White (1996) distribution with concentrations from Klypin (2016). Default

- NFW. By default we are assuming a Navarro-Frenk-White (1996) distribution with concentrations from Klypin (2016). Default
- Modified NFW. As in the literature there are indications of ELG prefering the outskirts of the halos (Alpaslan16, Araljic18, Orsi&Angulo18), we allow for a modification of concentrations by a free factor K:

$$c = K \cdot c_{\text{kly}}$$

 $\rho(x) \propto \frac{1}{x \cdot (1+x)^2}$

with $x = c - \frac{r}{r}$

 $r_{\rm vir}$

- NFW. By default we are assuming a Navarro-Frenk-White (1996) distribution with concentrations from Klypin (2016). Default
- Modified NFW. As in the literature there are indications of ELG prefering the outskirts of the halos (Alpaslan16, Araljic18, Orsi&Angulo18), we allow for a modification of concentrations by a free factor K:

• Particles. We put galaxies in satellite dark matter particle locations.

- NFW. By default we are assuming a Navarro-Frenk-White (1996) distribution with concentrations from Klypin (2016). Default
- Modified NFW. As in the literature there are indications of ELG prefering the outskirts of the halos (Alpaslan16, Araljic18, Orsi&Angulo18), we allow for a modification of concentrations by a free factor K: $c = K \cdot c_{klv}$

- Particles. We put galaxies in satellite dark matter particle locations.
- Modified particles.

We modify the intrinsic concentration by moving the satellite location:

$$\vec{r}_{\text{sat}} = \vec{r}_{\text{h}} + \frac{1}{K}(\vec{r}_{\text{DM}} - \vec{r}_{\text{h}})$$

$$\rho(x) \propto \frac{1}{x \cdot (1+x)^2}$$

with $x = c \frac{r}{r_{\text{vir}}}$
8),
 $= K \cdot c_{\text{kly}}$

HOD: SATELLITE VELOCITY PROFILES

VIRAL THEOREM.
 BRYAN & NORMAN (1998)

$$v_i^{\text{gal}} \curvearrowleft \mathcal{N}(v_i^{\text{h}}, \sigma_v) \qquad \sigma_v = 476 \cdot 0.9 [\Delta_{\text{vir}} E^2(z)]^{1/6} \left(\frac{M}{10^{15} M_{\odot} h^{-1}}\right)^{1/3} km/s$$

for $i = x, y, z$

• VIRAL THEOREM + VELOCITY BIAS

$$v_i^{\text{gal}} \curvearrowleft \mathcal{N}(v_i^{\text{h}}, \alpha_v \cdot \sigma_v)$$

 $\langle M_{\rm halo} \rangle = 7 \times 10^{11} M_{\odot} / M_{\odot}$

• PARTICLES (WITH VELOCITY BIAS)

$$\vec{v}_{\text{sat}} = \vec{v}_{\text{h}} + \alpha_{v}(\vec{v}_{\text{DM}} - \vec{v}_{\text{h}})$$

$$\vec{v}_{t}^{\text{infall}} \curvearrowleft \mathcal{N}(-500 km/s, 200 km/s)$$
$$\vec{v}_{tot}^{\text{gal}} = \vec{v}_{r}^{\text{gal}} + v_{r}^{\text{infall}} \cdot \vec{u}_{r}$$
$$\vec{u}_{r} = \frac{\vec{r}_{\text{sat}} - \vec{r}_{\text{h}}}{|\vec{r}_{\text{sat}} - \vec{r}_{\text{h}}|}$$

HOD: SATELLITE VELOCITY PROFILES

- VIRAL THEOREM.
 BRYAN & NORMAN (1998)
- VIRAL THEOREM + VELOCITY BIAS

PARTICLES (WITH VELOCITY BIAS)

NET INFALL VELOCITY
 MOTIVATED BY ORSI & ANGULO 2018

HOD: SATELLITE VELOCITY PROFILES

PART IV. CONSTRAINING THE MODEL WITH DATA.

FITTING EBOSS DATA

 $\theta_{0,2,r_p} = \{\xi_0(r_0), \xi_2(r_2) w p(r_p),\} \qquad \forall \{15 < r_0 < 40; \ 10 < r_2 < 25; \ 0.02 \le r_p \le 10\} \ [\text{Mpc}/h]$

 $\chi^2 = \vec{\theta}^T C^{-1} \vec{\theta}$

The PIP weights (Bianchi 2017) are able to correct for fibre collisions (see Mohammad et. al 2020)

FITTING PARAMETER {f_{sat}, K}

Modified NFW profile: - NFW profiles with concentrations c rescaled by **K**

$$c = K \cdot c_{\text{kly}}$$

S. Ávila (UAM) - LlneA webinars - 8/Apr/2021 - based on 2007.09012 Default: HOD-3, Poisson, NFW, viral th, no infall vel.

FITTING PARAMETER **{f**_{sat}, **K}**

Varying fraction of satellites and concentration rescaling (K)

Default: HOD-3, Poisson, **NFW**, viral th, no infall vel. S. Ávila (UAM) - LlneA webinars - 8/Apr/2021 - based on 2007.09012

FITTING PARAMETER **{f**_{sat},β**}**

Varying fraction of satellites and PDF scatter

$$\sigma = (1+\beta) \cdot \sqrt{N}$$

S. Ávila (UAM) - LlneA webinars - 8/Apr/2021 - based on 2007.09012 Default: HOD-3, Poisson, NFW, viral th, no infall vel.
FITTING PARAMETER { f_{SAT} , α_v }

73

S. Ávila (UAM) - LineA webinars - 8/Apr/2021 - based on 2007.09012 Default: HOD-3, Poisson, NFW, viral th

WHAT ABOUT THE INFALL VELOCITY?

74

FITTING PARAMETER {f_{sat}, α_v } w V_{infall}=0 Or V_{infall}=500

Default: HOD-3, Poisson, NFW, viral th

FITTING PARAMETER { f_{sat} , α_v } w V_{INFALL}=0 OR V_{INFALL}=500

S. Ávila (UAM) - LlneA webinars - 8/Apr/2021 - based on 2007.09012

Default: HOD-3, Poisson, NFW, viral th

WHAT IF WE USE THE PARTICLE PROFILES FOR THE SATELLITES, INSTEAD OF THE ANALYTIC NFW?

77

Same fits as above, but with **Particles** profiles

Same fits as above, but with Particles profiles

Evidence for sub-Poissonian PDF goes away

Same fits as above, but with Particles profiles

Evidence for sub-Poissonian PDF goes away

Evidence for velocity bias remains (although slightly lower)

WAIT, SO WHAT HAPPENS IF YOU CHANGE THE SHAPE OF THE MEAN **HOD?** THAT'S WHAT EVERYBODY ALWAYS LOOKS AT

83

SAME AS ABOVE BUT CHANGING MEAN HOD

- ALL THE CHANGES ARE ABSORBED BY A CHANGE IN THE FRACTION OF SATELLITES $\mathbf{f}_{\mathsf{SAT}}$
- THE REST OF VARIABLES REMAIN UNCHANGED

S. Ávila (UAM) - LlneA webinars - 8/Apr/2021 - based on 2007.09012

SAME AS ABOVE BUT CHANGING MEAN HOD

- ALL THE CHANGES ARE ABSORBED BY A CHANGE IN THE FRACTION OF SATELLITES \mathbf{f}_{SAT}
- THE REST OF VARIABLES REMAIN UNCHANGED

S. Ávila (UAM) - LlneA webinars - 8/Apr/2021 - based on 2007.09012

OKAY, BUT ALL THOSE VARIABLES MUST BE DEGENERATED ONE TO ANOTHER

86

FIT SIMULTANEOUSLY PDF & CONCENTRATIONS $\{f_{sat}, \beta, K\}$

- THIS GIVES THE BEST OF ALL FITS
- DATA STILL PREFERS (VERY) UNDER-CONCENTRATED PROFILES

• Now, super-poissonian PDF is preferred ($\beta > 0$)

FIT SIMULTANEOUSLY PDF & VELOCITY BIAS $\{f_{SAT}, \beta, \alpha_v\}$

- FIT REMAINS AT $\alpha_v = 1.5$
- However, PDF prefers to go Poissonian
 (β=0)

FIT SIMULTANEOUSLY VELOCITY BIAS & CONCENTRATIONS $\{f_{SAT}, \alpha_v, K\}$

• VELOCITY BIAS DISAPPEARS ($\alpha_v = 1.0$)

 CONCENTRATIONS REMAIN AT SIMILAR VALUES K~0.25

ALRIGHT, WHAT SHOULD WE CONCLUDE ABOUT ALL THOSE CONTOUR PLOTS?

90

SUMMARY OF THE FITS

- Clear and consistent preference for under-concentrated profiles $K \sim 0.15$ -0.4. $c \rightarrow K \cdot c$
- This factor (K) is key to obtain a good fit
- Mean HOD shape sub-dominant (re-absorbed by f_{sat})
- Slight evidence for high velocity bias (or infall velocity)
- Slight preference for Particle profiles
- The fraction of satellites is very susceptible to model assumptions (HOD-shape, profiles...) varying from 22% to 70% (but most models around 50%)
- No clear preference for the PDF type, very sensitive to the rest of assumptions

Mock	HOD	$f_{\rm sat}$	β	K	α_v	Profile	v^{infall}	χ^2_{tot} (bins: 14+3+5)
0	HOD-3	0.22	0	1	1	NFW	0	31.3
1	HOD-3	0.56	N-I	1	1	NFW	0	24
2	HOD-3	0.51	0	0.25	1	NFW	0	12.7
3	HOD-3	0.21	0	1	1.5	NFW	0	28.3
4	HOD-3	0.21	0	1	1.0	NFW	-500	28
5	HOD-3	0.36	0.0	1	1	PART	0	23
6	HOD-3	0.44	0	0.4	1	PART	0	13.5
7	HOD-3	0.26	0	1	1.2	PART	0	21.4
8	HOD-3	0.26	0	1	0.8	PART	-500	21.2
9	HOD-3	0.48	0.10	0.15	1	NFW	0	10.9
10	HOD-3	0.21	0.0	1	1.5	NFW	0	28.3
11	HOD-3	0.51	0	0.25	1.0	NFW	0	12.7
12	HOD-1	0.40	N-I	1	1	NFW	0	25
13	HOD-1	0.43	0	0.25	1	NFW	0	12.4
14	HOD-1	0.18	0	1	1.6	NFW	0	28.6
15	HOD-2	0.70	N-I	1	1	NFW	0	28.4
16	HOD-2	0.70	0	0.25	1	NFW	0	13.8
17	HOD-2	0.22	0	1	1.5	NFW	0	29.1

PART V. COSMOLOGY

SO... IS THIS ALL REALLY RELEVANT FOR COSMOLOGY?

92

TESTING RSD ANALYSIS PIPELINE

WE RUN THE EBOSS FITTING PIPELINE TO OUR MOCKS

USING EXTENDED TNS MODEL

DETAILS OF THE MODEL CHOICES IN: DE MATTIA+2021, ALAM+2021

 $P_{g,\delta\delta}(k) = b_1^2 P_{\delta\delta}(k) + 2b_1 b_2 P_{b2,\delta}(k) + 2b_{s2} b_1 P_{bs2,\delta}(k)$ $+ 2b_{3nl} b_1 \sigma_3^2(k) P_m^{\text{lin}}(k) + b_2^2 P_{b22}(k) + 2b_2 b_{s2} P_{b2s2}(k) + b_{s2}^2 P_{bs22}(k) + N$

 $P_{g,\delta\theta}(k) = b_1 P_{\delta\theta}(k) + b_2 P_{b2,\theta}(k) + b_{s2} P_{bs2,\theta}(k) + b_{3nl} \sigma_3^2(k) P_m^{\rm lin}(k)$

TESTING RSD ANALYSIS PIPELINE

WE RUN THE EBOSS FITTING PIPELINE TO OUR MOCKS

USING EXTENDED TNS MODEL

DETAILS OF THE MODEL CHOICES IN: DE MATTIA+2021, ALAM+2021

 $\mathbf{P}_{g,\delta\theta}(k) = b_1 P_{\delta\theta}(k) + b_2 P_{b2,\theta}(k) + b_{s2} P_{bs2,\theta}(k) + b_{3nl} \sigma_3^2(k) P_m^{\rm lin}(k)$

HOW CAN THE 1-HALO TERM REALLY AFFECT OUR COSMOLOGICAL FITS?

96

REMEMBER, THE QUADRUPOLE IS AFFECTED

• UP TO ~50 Mpc/h

 But also, in Fourier space, things are more mixed up...

CLUSTERING IN FOURIER SPACE

CLUSTERING IN FOURIER SPACE

 $\alpha_v = 0.2$

 $\alpha_v = 0.6$

 $\alpha_v = 1.0$

 $\alpha_v = 1.4$

0.5

0.4

5000 robotic fibers to get 30 million redshifts in 5 years

1% survey just started, data to be analysed over next $\sim 1/2$ year

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

5000 robotic fibers to get 30 million redshifts in 5 years 1% survey just started, data to be analysed over next $\sim 1/2$ year

We have adapted the pipeline to implement what we learnt from Avila+2020 and eBOSS to DESI. (B. Vos-Ginés, V. González-Pérez, Ávila+ DESI)

within HOD mock challenge key project.

U.S. Department of Energy Office of Science

Euclid, 2 experiments in 1

Area $\sim 15,000 \text{ deg}^2$

Spectroscopic H-alpha emission line survey in 0.9<z<1.8 ~30 million galaxies

Photometric survey 30 gal/arcmin² 0<z<2.5

European Space Agency Agence spatiale européenne

Euclid, 2 experiments in 1

Area $\sim 15,000 \text{ deg}^2$

Spectroscopic H-alpha emission line survey in 0.9<z<1.8 ~30 million galaxies

Photometric survey 30 gal/arcmin² 0<z<2.5

Planning to also adapt the same pipeline to Euclid and run a HOD mock challenge

European Space Agency Agence spatiale européenne

MOVING FORWARD WITH NEW SIMULATIONS

Unique suite with galactic physics and an effective volume \sim 7 times larger than Euclid/DESI

Ideal to test clustering models

Knebe, Lopez-Cano, Avila, ... arXiv:2103.13088 Deriving abundance and clustering of H-alpha ELGs (Euclid targets). Catalogues available.

S. Avila (UAM) - LineA webinars - 8/Apr/2021 - based on 2007.09012

- CHES

VAN)

00

1

Square Kilometer Array

The phase-I SKA HI intensity mapping program will survey 20,000 deg² in the 0.3<z<3 range.

Very large scales!

SQUARE KILOMETRE ARRAY

Square Kilometer Array

CONCLUSIONS

- We dissected the assumptions that go into the HOD model for ELGs.
- We studied how the detailed choices of
 - Mean halo occupation
 - Satellite probability distribution function
 - Satellite position profiles
 - Satellite velocity profiles

affect galaxy clustering. We studied models motivated from previous studies.

- The satellite assignment choices (PDF + profiles) are found more relevant than the mean occupation
- We find strong and robust evidence for under-concentrated ELG profiles, and find this piece key in order to fit the data.
- The galaxy-halo connection is shown to affect galaxy clustering even in "Cosmological scales" and potentially cosmological inference. Although we showed this effect was subdominant for the eBOSS analysis.
- Future surveys, with increased statistical power, and planning to disentangle smaller scales will need to test their pipeline against different galaxy mocks.
- Our work is particularly relevant for Euclid and DESI, that will heavily rely on Emission Line Galaxies.

SCALE CUTS

